Inference Guide – Ca Proportion

4-steps needed for inference problems:

- 1. Parameters/Hypotheses
 - · Write the null hypothesis
 - Write the alternative hypothesis and if 1 or 2-tailed test

2. Plan - Think

- · Decide what inference procedure.
- List the assumptions and check the conditions.
- Specify the model / name the test
 "Because the conditions are satisfied,
 I can model the sampling distribution of the _____ with a ____ model and perform a _____ "

3. Mechanics - Show

- · Write down the statistics
- Draw curve showing sampling model mark parameters & statistics & shade tail(s).
- Calculate the value of the test statistic show the formula, substitute all the proper values, and give the final result.
- · Find the Confidence Interval, P-Value, etc.

4. Conclusion – Tell what you've learned w/ "4Cs")

- Interpret the confidence interval in context— "I'm 95% confident, based on this sample, that the proportion of all auto accidents that involve teenage drivers is between 12.7% and 18.6%."
- Link the P-value to the decision about the null hypothesis and interpret that decision in the proper context — "The high P-value indicates that these results could be reasonably explained by sampling error, so I fail to reject the null hypothesis. We do not have evidence of a change in the percentage of ______."

One Sample

XX% Confidence

 H_0 : $p = p_0$

Interval

 $H_A: p \neq p_0$ (2 Tailed)

 $H_A: p > or < p_0$ (1 Tailed)

A1 Individuals/data independent.

C1 SRS and n < 10% population.

A2 Sample large enough to approximate SDM w/ Normal model.

C2 Successes ≥ 10 and Failures ≥ 10.

proportion, Normal model One-proportion

z-interval

z-test

$$n = , \hat{\rho} = SE(\hat{p}) = \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

$$SD(\hat{p}) = \sqrt{\frac{p_0 q_0}{n}}$$

$$z^* = \left| invNorm \left(\frac{1 - confidence\ level}{2} \right) \right|$$

$$N\left(p_0, \sqrt{\frac{p_0 q_0}{n}}\right)$$

P-value = normalcdf(,)